Методы и средства защиты информации



              

Математика разделения секрета


Рассмотрим следующую, в наше время вполне реальную ситуацию. Два совладельца драгоценности хотят положить ее на хранение в сейф. Сейф современный, с цифровым замком на 16 цифр. Так как совладельцы не доверяют друг другу, то они хотят закрыть сейф таким образом, чтобы они могли открыть его вместе, но никак не порознь. Для этого они приглашают третье лицо, называемое дилером, которому они оба доверяют (например, потому что оно не получит больше доступ к сейфу). Дилер случайно выбирает 16 цифр в качестве “ключа”, чтобы закрыть сейф, и затем сообщает первому совладельцу втайне от второго первые 8 цифр “ключа”, а второму совладельцу втайне от первого — последние 8 цифр “ключа”. Такой способ представляется с точки здравого смысла оптимальным, ведь каждый из совладельцев, получив “полключа”, не сможет им воспользоваться без второй половины, а что может быть лучше?! Недостатком данного примера является то, что любой из совладельцев, оставшись наедине с сейфом, может за пару минут найти недостающие “полключа” с помощью несложного устройства, предназначенного для перебора ключей и работающего на тактовой частоте 1 МГц. Кажется, что единственный выход — в увеличении размера “ключа”, скажем, вдвое. Но есть другой математический выход, опровергающий (в данном случае — к счастью) соображения здравого смысла. А именно, дилер независимо выбирает две случайные последовательности по 16 цифр в каждой, сообщает каждому из совладельцев втайне от другого “его” последовательность, а в качестве “ключа”, чтобы закрыть сейф, использует последовательность, полученную сложением по модулю 10 соответствующих цифр двух выбранных последовательностей. Довольно очевидно, что для каждого из совладельцев все 1016 возможных “ключей” одинаково вероятны и остается только перебирать их, что потребует в среднем около полутора лет для устройства перебора ключей, оборудованного процессором с частотой 100 МГц.

И с математической, и с практической точки зрения неинтересно останавливаться на случае двух участников и следует рассмотреть общую ситуацию.


Содержание  Назад  Вперед